全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sharing Non-Anonymous Costs of Multiple Resources Optimally

Full-Text   Cite this paper   Add to My Lib

Abstract:

In cost sharing games, the existence and efficiency of pure Nash equilibria fundamentally depends on the method that is used to share the resources' costs. We consider a general class of resource allocation problems in which a set of resources is used by a heterogeneous set of selfish users. The cost of a resource is a (non-decreasing) function of the set of its users. Under the assumption that the costs of the resources are shared by uniform cost sharing protocols, i.e., protocols that use only local information of the resource's cost structure and its users to determine the cost shares, we exactly quantify the inefficiency of the resulting pure Nash equilibria. Specifically, we show tight bounds on prices of stability and anarchy for games with only submodular and only supermodular cost functions, respectively, and an asymptotically tight bound for games with arbitrary set-functions. While all our upper bounds are attained for the well-known Shapley cost sharing protocol, our lower bounds hold for arbitrary uniform cost sharing protocols and are even valid for games with anonymous costs, i.e., games in which the cost of each resource only depends on the cardinality of the set of its users.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133