全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

$L_p$-stabilization of integrator chains subject to input saturation using Lyapunov-based homogeneous design

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider the $n$-th integrator $\dot x=J_nx+\sigma(u)e_n$, where $x\in\mathbb{R}^n$, $u\in \mathbb{R}$, $J_n$ is the $n$-th Jordan block and $e_n=(0\ \cdots 0\ 1)^T\in\mathbb{R}^n$. We provide easily implementable state feedback laws $u=k(x)$ which not only render the closed-loop system globally asymptotically stable but also are finite-gain $L_p$-stabilizing with arbitrarily small gain. These $L_p$-stabilizing state feedbacks are built from homogeneous feedbacks appearing in finite-time stabilization of linear systems. We also provide additional $L_\infty$-stabilization results for the case of both internal and external disturbances of the $n$-th integrator, namely for the perturbed system $\dot x=J_nx+e_n\sigma (k(x)+d)+D$ where $d\in\mathbb{R}$ and $D\in\mathbb{R}^n$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133