|
Computer Science 2014
A Characterization of the Minimal Average Data Rate that Guarantees a Given Closed-Loop Performance LevelAbstract: This paper studies networked control systems closed over noiseless digital channels. By focusing on noisy LTI plants with scalar-valued control inputs and sensor outputs, we derive an absolute lower bound on the minimal average data rate that allows one to achieve a prescribed level of stationary performance under Gaussianity assumptions. We also present a simple coding scheme that allows one to achieve average data rates that are at most 1.254 bits away from the derived lower bound, while satisfying the performance constraint. Our results are given in terms of the solution to a stationary signal-to-noise ratio minimization problem and builds upon a recently proposed framework to deal with average data rate constraints in feedback systems. A numerical example is presented to illustrate our findings.
|