全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Learning Valuation Distributions from Partial Observation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Auction theory traditionally assumes that bidders' valuation distributions are known to the auctioneer, such as in the celebrated, revenue-optimal Myerson auction. However, this theory does not describe how the auctioneer comes to possess this information. Recently, Cole and Roughgarden [2014] showed that an approximation based on a finite sample of independent draws from each bidder's distribution is sufficient to produce a near-optimal auction. In this work, we consider the problem of learning bidders' valuation distributions from much weaker forms of observations. Specifically, we consider a setting where there is a repeated, sealed-bid auction with $n$ bidders, but all we observe for each round is who won, but not how much they bid or paid. We can also participate (i.e., submit a bid) ourselves, and observe when we win. From this information, our goal is to (approximately) recover the inherently recoverable part of the underlying bid distributions. We also consider extensions where different subsets of bidders participate in each round, and where bidders' valuations have a common-value component added to their independent private values.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133