全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improved Approximation Algorithms for the Min-Max Selecting Items Problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give a simple deterministic $O(\log K / \log\log K)$ approximation algorithm for the Min-Max Selecting Items problem, where $K$ is the number of scenarios. While our main goal is simplicity, this result also improves over the previous best approximation ratio of $O(\log K)$ due to Kasperski, Kurpisz, and Zieli\'nski (Information Processing Letters (2013)). Despite using the method of pessimistic estimators, the algorithm has a polynomial runtime also in the RAM model of computation. We also show that the LP formulation for this problem by Kasperski and Zieli\'nski (Annals of Operations Research (2009)), which is the basis for the previous work and ours, has an integrality gap of at least $\Omega(\log K / \log\log K)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133