Dissemination and Molecular Epidemiology of KPC-Producing Klebsiella pneumoniae Collected in Puerto Rico Medical Center Hospitals during a 1-Year Period
During a 2003-2004 PCR-based surveillance study conducted in 6 Puerto Rico Medical Center hospitals, 27/92 multi-beta-lactam-resistant Klebsiella pneumoniae strains were identified as carbapenemase (KPC) positive in 4 hospitals. The objectives of this study were to identify the KPC variants, their genetic relatedness, and any other beta-lactamases present. Susceptibility testing, pulsed field gel electrophoresis (PFGE), isoelectric focusing, PCR, and DNA sequencing were performed. KPC variants -2, -3, -4, and -6 were identified. Additional beta-lactamases detected were TEM, DHA, OXA-9 and -30. Antimicrobial susceptibility to carbapenems varied depending on the KPC variant. Five PFGE genetically related groups were identified in 15 isolates and 12 unrelated types. PFGE profiles suggested that both clonal and horizontal transfer are contributing to the dissemination of these isolates among the various hospitals. Comparison of the 2003 and a 2009 surveillance studies showed a significant increase in the KPC-positive K. pneumoniae isolates in the latter. 1. Introduction The detection of carbapenemase producing isolates is a major clinical concern since carbapenems are the drug of choice for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. KPC stands for Klebsiella pneumoniae carbapenemase, which are classified as Bush subgroup 2f Class A serine-based enzymes, inhibited by clavulanic acid and tazobactam. They are capable of hydrolyzing beta-lactam antibiotics of all classes [1–3]. KPC-producing isolates, which were initially restricted to hospitals located in the northeastern USA, have recently been detected in other USA regions and in other countries worldwide [1–3]. They have been identified in K. pneumoniae, other Enterobacteriaceae, and recently in Pseudomonas aeruginosa, and Acinetobacter baumannii [1–9]. Serious nosocomial outbreaks have been associated with these KPC-positive organisms [10–14]. This carbapenemase-encoding gene is found on transferable plasmids associated with transposon Tn4401 [15, 16]. Ten KPC variants (KPC-2 to -11) have been described so far (http://www.lahey.org/studies/) differing between them in 1- or 2-point mutation [1–3]. KPC-producing isolates may be difficult to detect since elevated carbapenem MIC are not always evident [2, 17]. This poses a major therapeutic challenge, as treatment may be inadequate and therefore may lead to significant increase in patients’ mortality, morbidity, and hospitalization costs. To improve the detection of KPC-positive Enterobacteriaceae, the Clinical and
References
[1]
K. Bush, “Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae,” Current Opinion in Microbiology, vol. 13, no. 5, pp. 558–564, 2010.
[2]
P. Nordmann, G. Cuzon, and T. Naas, “The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria,” The Lancet Infectious Diseases, vol. 9, no. 4, pp. 228–236, 2009.
[3]
A. M. Queenan and K. Bush, “Carbapenemases: the versatile β-lactamases,” Clinical Microbiology Reviews, vol. 20, no. 3, pp. 440–458, 2007.
[4]
P. E. Akpaka, W. H. Swanston, H. N. Ihemere et al., “Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago,” Journal of Clinical Microbiology, vol. 47, no. 8, pp. 2670–2671, 2009.
[5]
L. Poirel, P. Nordmann, E. Lagrutta, T. Cleary, and L. S. Munoz-Price, “Emergence of KPC-producing Pseudomonas aeruginosa in the United States,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 7, p. 3072, 2010.
[6]
I. E. Robledo, E. E. Aquino, M. I. Sante et al., “Detection of KPC in Acinetobacter spp. in Puerto Rico,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 3, pp. 1354–1357, 2010.
[7]
I. E. Robledo, E. E. Aquino, and G. J. Vazquez, “Detection of the KPC gene in Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii during a PCR-based nosocomial surveillance study in Puerto Rico,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 6, pp. 2968–2970, 2011.
[8]
M. V. Villegas, K. Lolans, A. Correa, J. N. Kattan, J. A. Lopez, and J. P. Quinn, “First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 4, pp. 1553–1555, 2007.
[9]
D. J. Wolter, N. Khalaf, I. E. Robledo et al., “Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican medical center hospitals: dissemination of KPC and IMP-18 β-lactamases,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 4, pp. 1660–1664, 2009.
[10]
C. J. Gregory, E. Llata, N. Stine et al., “Outbreak of carbapenem-resistant Klebsiella pneumoniae in Puerto Rico associated with a novel carbapenemase variant,” Infection Control and Hospital Epidemiology, vol. 31, no. 5, pp. 476–484, 2010.
[11]
N. Kassis-Chikhani, D. Decre, P. Ichai et al., “Outbreak of Klebsiella pneumoniae producing KPC-2 and SHV-12 in a French hospital,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 7, pp. 1539–1540, 2010.
[12]
K. Kontopoulou, E. Protonotariou, K. Vasilakos et al., “Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 β-lactamase resistant to colistin,” Journal of Hospital Infection, vol. 76, no. 1, pp. 70–73, 2010.
[13]
R. Zhang, X. D. Wang, J. C. Cai, et al., “Outbreak of KPC-2-producing Klebsiella pneumoniae with high qnr prevalence in a Chinese hospital,” Journal of Medical Microbiology, vol. 60, no. 11, part 7, pp. 977–982, 2011.
[14]
A. Zioga, V. Miriagou, E. Tzelepi et al., “The ongoing challenge of acquired carbapenemases: a hospital outbreak of Klebsiella pneumoniae simultaneously producing VIM-1 and KPC-2,” International Journal of Antimicrobial Agents, vol. 36, no. 2, pp. 190–191, 2010.
[15]
T. Curiao, M. I. Morosini, P. Ruiz-Garbajosa et al., “Emergence of bla KPC-3-Tn4401a associated with a pKPN3/4-like plasmid within ST384 and ST388 Klebsiella pneumoniae clones in Spain,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 8, pp. 1608–1614, 2010.
[16]
T. Naas, G. Cuzon, M. V. Villegas, M. F. Lartigue, J. P. Quinn, and P. Nordmann, “Genetic structures at the origin of acquisition of the β-lactamase bla KPC gene,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 4, pp. 1257–1263, 2008.
[17]
K. F. Anderson, D. R. Lonsway, J. K. Rasheed et al., “Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae,” Journal of Clinical Microbiology, vol. 45, no. 8, pp. 2723–2725, 2007.
[18]
Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement, vol. 30, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2010, Vol M100-S20.
[19]
G. J. Vazquez, I. E. Robledo, A. Arroyo et al., “A comparison of the antimicrobial resistance patterns of gram-negative bacilli isolated from community-private and university-affiliated hospitals from Puerto Rico,” Puerto Rico Health Sciences Journal, vol. 22, no. 3, pp. 265–271, 2003.
[20]
E. S. Moland, N. D. Hanson, J. A. Black, A. Hossain, W. Song, and K. S. Thomson, “Prevalence of newer β-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002,” Journal of Clinical Microbiology, vol. 44, no. 9, pp. 3318–3324, 2006.
[21]
F. J. Perez-Perez and N. D. Hanson, “Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR,” Journal of Clinical Microbiology, vol. 40, no. 6, pp. 2153–2162, 2002.
[22]
J. D. Pitout, A. Hossain, and N. D. Hanson, “Phenotypic and molecular detection of CTX-M-β-lactamases produced by Escherichia coli and Klebsiella spp,” Journal of Clinical Microbiology, vol. 42, no. 12, pp. 5715–5721, 2004.
[23]
C. C. Sanders, W. E. Sanders Jr., and E. S. Moland, “Characterization of β-lactamases in situ on polyacrylamide gels,” Antimicrobial Agents and Chemotherapy, vol. 30, no. 6, pp. 951–952, 1986.
[24]
R. V. Goering, “Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease,” Infection, Genetics and Evolution, vol. 10, no. 7, pp. 866–875, 2010.
[25]
R. V. Goering, “Pulsed-field gel electrophoresis,” in Molecular Microbiology: Diagnostic Principles and Practice, D. H. Persing, F. C. Tenover, J. Versalovic, et al., Eds., pp. 185–196, ASM Press, Washington, DC, USA, 2004.
[26]
D. J. Wolter, P. M. Kurpiel, N. Woodford, M. F. Palepou, R. V. Goering, and N. D. Hanson, “Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 2, pp. 557–562, 2009.
[27]
E. S. Moland, G. H. Seong, K. S. Thomson, D. H. Larone, and N. D. Hanson, “Klebsiella pneumoniae isolate producing at least eight different β-lactamases, including AmpC and KPC β-lactamases,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 2, pp. 800–801, 2007.
[28]
M. Castanheira, H. S. Sader, and R. N. Jones, “Antimicrobial susceptibility patterns of KPC-producing or CTX-M-producing Enterobacteriaceae,” Microbial Drug Resistance, vol. 16, no. 1, pp. 61–65, 2010.
[29]
J. Alba, Y. Ishii, K. Thomson, E. S. Moland, and K. Yamaguchi, “Kinetics study of KPC-3, a plasmid-encoded class A carbapenem-hydrolyzing β-lactamase,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 11, pp. 4760–4762, 2005.
[30]
B. Kitchel, J. K. Rasheed, A. Endimiani et al., “Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 10, pp. 4201–4207, 2010.
[31]
A. L. Roth, P. M. Kurpiel, P. D. Lister, and N. D. Hanson, “blaKPC RNA expression correlates with two transcriptional start sites but not always with gene copy number in four genera of gram-negative pathogens,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 8, pp. 3936–3938, 2011.
[32]
A. Endimiani, F. Perez, S. Bajaksouzian et al., “Evaluation of updated interpretative criteria for categorizing Klebsiella pneumoniae with reduced carbapenem susceptibility,” Journal of Clinical Microbiology, vol. 48, no. 12, pp. 4417–4425, 2010.
[33]
Centers for Disease Control and Prevention (CDC), “Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities,” Morbidity and Mortality Weekly Report, vol. 58, no. 10, pp. 256–260, 2009.
[34]
S. A. Clock, B. Cohen, M. Behta, B. Ross, and E. L. Larson, “Contact precautions for multidrug-resistant organisms: current recommendations and actual practice,” American Journal of Infection Control, vol. 38, no. 2, pp. 105–111, 2010.
[35]
S. J. Patel, A. Oshodi, P. Prasad et al., “Antibiotic use in neonatal intensive care units and adherence with centers for disease control and prevention 12 step campaign to prevent antimicrobial resistance,” Pediatric Infectious Disease Journal, vol. 28, no. 12, pp. 1047–1051, 2009.