全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transition-Based Dependency Parsing With Pluggable Classifiers

Full-Text   Cite this paper   Add to My Lib

Abstract:

In principle, the design of transition-based dependency parsers makes it possible to experiment with any general-purpose classifier without other changes to the parsing algorithm. In practice, however, it often takes substantial software engineering to bridge between the different representations used by two software packages. Here we present extensions to MaltParser that allow the drop-in use of any classifier conforming to the interface of the Weka machine learning package, a wrapper for the TiMBL memory-based learner to this interface, and experiments on multilingual dependency parsing with a variety of classifiers. While earlier work had suggested that memory-based learners might be a good choice for low-resource parsing scenarios, we cannot support that hypothesis in this work. We observed that support-vector machines give better parsing performance than the memory-based learner, regardless of the size of the training set.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133