全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Domain Adaptation: Learning Bounds and Algorithms

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper addresses the general problem of domain adaptation which arises in a variety of applications where the distribution of the labeled sample available somewhat differs from that of the test data. Building on previous work by Ben-David et al. (2007), we introduce a novel distance between distributions, discrepancy distance, that is tailored to adaptation problems with arbitrary loss functions. We give Rademacher complexity bounds for estimating the discrepancy distance from finite samples for different loss functions. Using this distance, we derive novel generalization bounds for domain adaptation for a wide family of loss functions. We also present a series of novel adaptation bounds for large classes of regularization-based algorithms, including support vector machines and kernel ridge regression based on the empirical discrepancy. This motivates our analysis of the problem of minimizing the empirical discrepancy for various loss functions for which we also give novel algorithms. We report the results of preliminary experiments that demonstrate the benefits of our discrepancy minimization algorithms for domain adaptation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133