全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Random subgraphs make identification affordable

Full-Text   Cite this paper   Add to My Lib

Abstract:

An identifying code of a graph is a dominating set which uniquely determines all the vertices by their neighborhood within the code. Whereas graphs with large minimum degree have small domination number, this is not the case for the identifying code number (the size of a smallest identifying code), which indeed is not even a monotone parameter with respect to graph inclusion. We show that every graph $G$ with $n$ vertices, maximum degree $\Delta=\omega(1)$ and minimum degree $\delta\geq c\log{\Delta}$, for some constant $c>0$, contains a large spanning subgraph which admits an identifying code with size $O\left(\frac{n\log{\Delta}}{\delta}\right)$. In particular, if $\delta=\Theta(n)$, then $G$ has a dense spanning subgraph with identifying code $O\left(\log n\right)$, namely, of asymptotically optimal size. The subgraph we build is created using a probabilistic approach, and we use an interplay of various random methods to analyze it. Moreover we show that the result is essentially best possible, both in terms of the number of deleted edges and the size of the identifying code.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133