全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Learning Halfspaces and Neural Networks with Random Initialization

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study non-convex empirical risk minimization for learning halfspaces and neural networks. For loss functions that are $L$-Lipschitz continuous, we present algorithms to learn halfspaces and multi-layer neural networks that achieve arbitrarily small excess risk $\epsilon>0$. The time complexity is polynomial in the input dimension $d$ and the sample size $n$, but exponential in the quantity $(L/\epsilon^2)\log(L/\epsilon)$. These algorithms run multiple rounds of random initialization followed by arbitrary optimization steps. We further show that if the data is separable by some neural network with constant margin $\gamma>0$, then there is a polynomial-time algorithm for learning a neural network that separates the training data with margin $\Omega(\gamma)$. As a consequence, the algorithm achieves arbitrary generalization error $\epsilon>0$ with ${\rm poly}(d,1/\epsilon)$ sample and time complexity. We establish the same learnability result when the labels are randomly flipped with probability $\eta<1/2$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133