In 2008 melamine-contaminated infant formula and dairy products in China led to over 50,000 hospitalizations of children due to renal injuries. In North America during 2007 and in Asia during 2004, melamine-contaminated pet food products resulted in numerous pet deaths due to renal failure. Animal studies have confirmed the potent renal toxicity of melamine combined with cyanuric acid. We showed previously that the solubility of melamine cyanurate is low at physiologic pH and ionic strength, provoking us to speculate how toxic levels of these compounds could be transported through the circulation without crystallizing until passing into the renal filtrate. We hypothesized that melamine might be sequestered by heme proteins, which could interfere with heme enzyme activity. Four heme peroxidase enzymes were selected for study: horseradish peroxidase (HRP), lactoperoxidase (LPO), and cyclooxygenase-1 and -2 (COX-1 and -2). Melamine exhibited noncompetitive inhibition of HRP , and LPO showed a mixed model of inhibition . The inhibition of HRP and LPO was confirmed using a chemiluminescent peroxidase assay. Melamine also exhibited COX-1 inhibition, but inhibition of COX-2 was not detected. Thus, our results demonstrate that melamine inhibits the activity of three heme peroxidases. 1. Introduction In 2007, the incidence of nephrotoxic renal failure of cats and dogs caused the recall of 1,177 lots of pet food products in the USA that were contaminated with melamine, cyanuric acid, and related triazine compounds [1]. The US Food and Drug Administration (FDA) and the US Department of Agriculture identified triazine contaminants in wheat gluten, rice protein, and corn gluten raw materials imported from China that were used as ingredients in pet food products [2]. In 2008, over 50,000 children exposed to foods manufactured using melamine-contaminated milk powder were hospitalized with renal injuries, and at least 6 died [3–5]. Melamine is a high-production industrial chemical used in the manufacture of thermosetting plastics, flame retardants, and fertilizers [6]. Melamine is an organic base with a 1,3,5-triazine skeleton (Figure 1) and a high nitrogen content (66% w/w). Ingredients used in food manufacturing that have higher total nitrogen levels achieve proportionally higher market prices because the total nitrogen level is used as an indirect index of the protein content. It has been alleged that melamine was added intentionally to raw materials sold by distributors to food manufacturers to elevate the apparent nitrogen content of those ingredients. Figure 1:
References
[1]
Melamine Contaminated Pet Foods—2007 Recall List, US FDA, 2008.
[2]
J. Y. Yhee, C. A. Brown, C. H. Yu, J. H. Kim, R. Poppenga, and J. H. Sur, “Brief communication: retrospective study of melamine/cyanuric acid-induced renal failure in dogs in Korea between 2003 and 2004,” Veterinary Pathology, vol. 46, no. 2, pp. 348–354, 2009.
[3]
C. A. Brown, K. S. Jeong, R. H. Poppenga et al., “Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007,” Journal of Veterinary Diagnostic Investigation, vol. 19, no. 5, pp. 525–531, 2007.
[4]
C. B. Langman, “Melamine, powdered milk, and nephrolithiasis in Chinese infants,” The New England Journal of Medicine, vol. 360, no. 11, pp. 1139–1141, 2009.
[5]
V. Bhalla, P. C. Grimm, G. M. Chertow, and A. C. Pao, “Melamine nephrotoxicity: an emerging epidemic in an era of globalization,” Kidney International, vol. 75, no. 8, pp. 774–779, 2009.
[6]
A. K. C. Hau, T. H. Kwan, and P. K. T. Li, “Melamine toxicity and the kidney,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 245–250, 2009.
[7]
R. Reimschuessel, E. R. Evans, C. B. Stine et al., “Renal crystal formation after combined or sequential oral administration of melamine and cyanuric acid,” Food and Chemical Toxicology, vol. 48, no. 10, pp. 2898–2906, 2010.
[8]
G. Liu, S. Li, J. Jia et al., “Pharmacokinetic study of melamine in rhesus monkey after a single oral administration of a tolerable daily intake dose,” Regulatory Toxicology and Pharmacology, vol. 56, no. 2, pp. 193–196, 2010.
[9]
Y. T. Wu, C. M. Huang, C. C. Lin et al., “Oral bioavailability, urinary excretion and organ distribution of melamine in sprague-dawley rats by high-performance liquid chromatography with tandem mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 58, no. 1, pp. 108–111, 2010.
[10]
C. C. Jacob, R. Reimschuessel, L. S. von Tungeln et al., “Dose-response assessment of nephrotoxicity from a 7-day combined exposure to melamine and cyanuric acid in F344 rats,” Toxicological Sciences, vol. 119, no. 2, pp. 391–397, 2011.
[11]
D. Nilubol, T. Pattanaseth, K. Boonsri, N. Pirarat, and N. Leepipatpiboon, “Melamine- and cyanuric acid-associated renal failure in pigs in Thailand,” Veterinary Pathology, vol. 46, no. 6, pp. 1156–1159, 2009.
[12]
B. Puschner, R. H. Poppenga, L. J. Lowenstine, M. S. Filigenzi, and P. A. Pesavento, “Assessment of melamine and cyanuric acid toxicity in cats,” Journal of Veterinary Diagnostic Investigation, vol. 19, no. 6, pp. 616–624, 2007.
[13]
R. Reimschuessel, C. M. Gieseker, R. A. Miller et al., “Evaluation of the renal effects of experimental feeding of melamine and cyanuric acid to fish and pigs,” American Journal of Veterinary Research, vol. 69, no. 9, pp. 1217–1228, 2008.
[14]
W. H. Tolleson, “Renal toxicity of pet foods contaminated with melamine and related compounds,” in Intentional and Unintentional Contaminants in Food and Feed, pp. 57–77, American Chemical Society, Washington, DC, USA, 2009.
[15]
Z. Wang, D. Chen, X. Gao, and Z. Song, “Subpicogram determination of melamine in milk products using a luminol-myoglobin chemiluminescence system,” Journal of Agricultural and Food Chemistry, vol. 57, no. 9, pp. 3464–3469, 2009.
[16]
J. Keesey, Biochemica Information, Boehringer Mannheim, Indianapolis, Ind, USA, 1st edition, 1987.
[17]
J. S. Shindler, R. E. Childs, and W. G. Bardsley, “Peroxidase from human cervical mucus—isolation and characterisation,” European Journal of Biochemistry, vol. 65, no. 2, pp. 325–331, 1976.
[18]
K. D. Kussendrager and A. C. M. van Hooijdonk, “Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications,” British Journal of Nutrition, vol. 84, supplement 1, pp. S19–S25, 2000.
[19]
J. Paquette and B. L. Ford, “Iodine chemistry in the +1 oxidation-state. 1. The electronic-spectra of OI-, HOI, and H2OI,” Canadian Journal of Chemistry-Revue Canadienne de Chimie, vol. 63, no. 9, pp. 2444–2448, 1985.
[20]
J. C. Wren, J. Paquette, S. Sunder, and B. L. Ford, “Iodine chemistry in the +1 oxidation-state. 2. A raman and UV-visible spectroscopic study of the disproportionation of hypoiodite in basic solutions,” Canadian Journal of Chemistry-Revue Canadienne de Chimie, vol. 64, no. 12, pp. 2284–2296, 1986.
[21]
A. L. Tsai and R. J. Kulmacz, “Prostaglandin H synthase: resolved and unresolved mechanistic issues,” Archives of Biochemistry and Biophysics, vol. 493, no. 1, pp. 103–124, 2010.
[22]
X. Lv, J. Wang, L. Wu, J. Qiu, J. Li, Z. Wu, et al., “Tissue deposition and residue depletion in lambs exposed to melamine and cyanuric acid-contaminated diets,” Journal of Agricultural and Food Chemistry, vol. 58, no. 2, pp. 943–948, 2010.