全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wishart Mechanism for Differentially Private Principal Components Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose a new input perturbation mechanism for publishing a covariance matrix to achieve $(\epsilon,0)$-differential privacy. Our mechanism uses a Wishart distribution to generate matrix noise. In particular, We apply this mechanism to principal component analysis. Our mechanism is able to keep the positive semi-definiteness of the published covariance matrix. Thus, our approach gives rise to a general publishing framework for input perturbation of a symmetric positive semidefinite matrix. Moreover, compared with the classic Laplace mechanism, our method has better utility guarantee. To the best of our knowledge, Wishart mechanism is the best input perturbation approach for $(\epsilon,0)$-differentially private PCA. We also compare our work with previous exponential mechanism algorithms in the literature and provide near optimal bound while having more flexibility and less computational intractability.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133