全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A quantitative performance analysis for Stokes solvers at the extreme scale

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article presents a systematic quantitative performance analysis for large finite element computations on extreme scale computing systems. Three parallel iterative solvers for the Stokes system, discretized by low order tetrahedral elements, are compared with respect to their numerical efficiency and their scalability running on up to $786\,432$ parallel threads. A genuine multigrid method for the saddle point system using an Uzawa-type smoother provides the best overall performance with respect to memory consumption and time-to-solution. The largest system solved on a Blue Gene/Q system has more than ten trillion ($1.1 \cdot 10 ^{13}$) unknowns and requires about 13 minutes compute time. Despite the matrix free and highly optimized implementation, the memory requirement for the solution vector and the auxiliary vectors is about 200 TByte. Brandt's notion of "textbook multigrid efficiency" is employed to study the algorithmic performance of iterative solvers. A recent extension of this paradigm to "parallel textbook multigrid efficiency" makes it possible to assess also the efficiency of parallel iterative solvers for a given hardware architecture in absolute terms. The efficiency of the method is demonstrated for simulating incompressible fluid flow in a pipe filled with spherical obstacles.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133