全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Norepinephrine Transporter Expression and Metaiodobenzylguanidine Avidity in Neuroblastoma: A Report from the Children's Oncology Group

DOI: 10.1155/2012/250834

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. 123I-metaiodobenzylguanidine (MIBG) is used for the diagnostic evaluation of neuroblastoma. We evaluated the relationship between norepinephrine transporter (NET) expression and clinical MIBG uptake. Methods. Quantitative reverse transcription PCR ( ) and immunohistochemistry (IHC; ) were performed for neuroblastoma NET mRNA and protein expression and correlated with MIBG avidity on diagnostic scans. The correlation of NET expression with clinical features was also performed. Results. Median NET mRNA expression level for the 19 MIBG avid patients was 12.9% (range 1.6–73.7%) versus 5.9% (range 0.6–110.0%) for the 8 nonavid patients ( ). Median percent NET protein expression was 50% (range 0–100%) in MIBG avid patients compared to 10% (range 0–80%) in nonavid patients ( ). MYCN amplified tumors had lower NET protein expression compared to nonamplified tumors (10% versus 50%; ). Conclusions. NET protein expression in neuroblastoma correlates with MIBG avidity. MYCN amplified tumors have lower NET protein expression. 1. Introduction Metaiodobenzylguanidine (MIBG) is an agent that is specifically taken up by sympathetic nervous system tissues, including neuroblastoma tumors. 123I-MIBG plays an essential role in the diagnostic evaluation of patients with neuroblastoma [1]. In addition, high-dose 131I-MIBG therapy is an important part of the treatment of patients with relapsed or refractory neuroblastoma [2]. The norepinephrine transporter (NET; encoded by SLC6A2 gene) is thought to be the primary transporter responsible for specific active cellular uptake of MIBG [3]. Several studies have demonstrated that neuroblastoma cell lines that lack NET mRNA expression fail to accumulate MIBG [4–6]. NET mRNA levels appear to correlate in vitro with extent of MIBG uptake [6–8]. Moreover, a range of cells that do not typically accumulate MIBG can be engineered to do so by transfection of the NET gene [9–17]. Additional studies in neuroblastoma and other neuroendocrine tumors have suggested that vesicular monoamine transporters (VMATs) and organic cation transporters (OCTs) may also play a role in mediating uptake of MIBG [18–20]. Approximately 10% of patients with neuroblastoma have tumors that do not accumulate MIBG on the basis of negative diagnostic 123I-MIBG scans [21]. The determinants of MIBG-avidity in clinical neuroblastoma tumors are unknown. One small study utilized RT-PCR to evaluate NET gene expression in 6 neuroblastoma tumors from patients with negative baseline MIBG diagnostic scans [4]. None of these tumors had detectable NET mRNA, while 90% of

References

[1]  D. Taggart, S. Dubois, and K. K. Matthay, “Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 52, no. 4, pp. 403–418, 2008.
[2]  S. G. DuBois and K. K. Matthay, “Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma,” Nuclear Medicine and Biology, vol. 35, supplement 1, pp. S35–S48, 2008.
[3]  J. V. Glowniak, J. E. Kilty, S. G. Amara, B. J. Hoffman, and F. E. Turner, “Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters,” Journal of Nuclear Medicine, vol. 34, no. 7, pp. 1140–1146, 1993.
[4]  S. Carlin, R. J. Mairs, A. G. McCluskey et al., “Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[131I]iodobenzylguanidine by neuroblastoma tumors,” Clinical Cancer Research, vol. 9, no. 9, pp. 3338–3344, 2003.
[5]  H. N. Lode, G. Bruchelt, G. Seitz et al., “Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of monoamine transporters in neuroblastoma cell lines: correlations to meta-iodobenzylguanidine (MIBG) uptake and tyrosine hydroxylase gene expression,” European Journal of Cancer A, vol. 31, no. 4, pp. 586–590, 1995.
[6]  R. J. Mairs, A. Livingston, M. N. Gaze, T. E. Wheldon, and A. Barrett, “Prediction of accumulation of 131I-labelled meta-iodobenzylguanidine in neuroblastoma cell lines by means of reverse transcription and polymerase chain reaction,” British Journal of Cancer, vol. 70, no. 1, pp. 97–101, 1994.
[7]  P. G. Montaldo, L. Raffaghello, F. Guarnaccia, V. Pistoia, A. Garaventa, and M. Ponzoni, “Increase of metaiodobenzylguanidine uptake and intracellular half-life during differentiation of human neuroblastoma cells,” International Journal of Cancer, vol. 67, no. 1, pp. 95–100, 1996.
[8]  S. S. More, M. Itsara, X. Yang et al., “Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems,” Clinical Cancer Research, vol. 17, no. 8, pp. 2339–2349, 2011.
[9]  A. Altmann, M. Kissel, S. Zitzmann et al., “Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma,” Journal of Nuclear Medicine, vol. 44, no. 6, pp. 973–980, 2003.
[10]  M. Boyd, S. H. Cunningham, M. M. Brown, R. J. Mairs, and T. E. Wheldon, “Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine,” Gene Therapy, vol. 6, no. 6, pp. 1147–1152, 1999.
[11]  M. Boyd, R. J. Mairs, S. C. Mairs et al., “Expression in UVW glioma cells of the noradrenaline transporter gene, driven by the telomerase RNA promoter, induces active uptake of [131I]MIBG and clonogenic cell kill,” Oncogene, vol. 20, no. 53, pp. 7804–7808, 2001.
[12]  N. Chen, Q. Zhang, Y. A. Yu et al., “A novel recombinant vaccinia virus expressing the human norepinephrine transporter retains oncolytic potential and facilitates deep-tissue imaging,” Molecular Medicine, vol. 15, no. 5-6, pp. 144–151, 2009.
[13]  S. Cunningham, M. Boyd, M. M. Brown, et al., “A gene therapy approach to enhance the targeted radiotherapy of neuroblastoma,” Medical and Pediatric Oncology, vol. 35, no. 6, pp. 708–711, 2000.
[14]  M. M. Doubrovin, E. S. Doubrovina, P. Zanzonico, M. Sadelain, S. M. Larson, and R. J. O'Reilly, “In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene,” Cancer Research, vol. 67, no. 24, pp. 11959–11969, 2007.
[15]  N. E. Fullerton, M. Boyd, R. J. Mairs et al., “Combining a targeted radiotherapy and gene therapy approach for adenocarcinoma of prostate,” Prostate Cancer and Prostatic Diseases, vol. 7, no. 4, pp. 355–363, 2004.
[16]  N. E. Fullerton, R. J. Mairs, D. Kirk et al., “Application of targeted radiotherapy/gene therapy to bladder cancer cell lines,” European Urology, vol. 47, no. 2, pp. 250–256, 2005.
[17]  A. G. McCluskey, M. Boyd, S. C. Ross et al., “[131I]meta-iodobenzylguanidine and topotecan combination treatment of tumors expressing the noradrenaline transporter,” Clinical Cancer Research, vol. 11, no. 21, pp. 7929–7937, 2005.
[18]  M. Bayer, Z. Ku?i, E. Sch?mig et al., “Uptake of mIBG and catecholamines in noradrenaline- and organic cation transporter-expressing cells: potential use of corticosterone for a preferred uptake in neuroblastoma and pheochromocytoma cells,” Nuclear Medicine and Biology, vol. 36, no. 3, pp. 287–294, 2009.
[19]  C. Fottner, A. Helisch, M. Anlauf et al., “6-18F-fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: Correlation with vesicular monoamine transporter expression,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 6, pp. 2800–2810, 2010.
[20]  L. K?lby, P. Bernhardt, A. M. Levin-Jakobsen et al., “Uptake of meta-iodobenzylguanidine in neuroendocrine tumours is mediated by vesicular monoamine transporters,” British Journal of Cancer, vol. 89, no. 7, pp. 1383–1388, 2003.
[21]  J. Treuner, U. Feine, and D. Niethammer, “Scintigraphic imaging of neuroblastoma with [131I]iodobenzylguanidine,” The Lancet, vol. 1, no. 8372, pp. 333–334, 1984.
[22]  D. L. Baker, M. L. Schmidt, S. L. Cohn, et al., “Outcome after reduced chemotherapy for intermediate-risk neuroblastoma,” The New England Journal of Medicine, vol. 363, no. 14, pp. 1313–1323, 2011.
[23]  S. G. Kreissman, J. G. Villablanca, R. C. Seeger, et al., “A randomized phase III trial of myeloablative autologous peripheral blood stem cell (PBSC) transplant (ASCT) for high-risk neuroblastoma (HR-NB) employing immunomagnetic purged (P) versus unpurged (UP) PBSC: a children's oncology group study,” Journal of Clinical Oncology, vol. 26, 2008, no. 10011.
[24]  J. M. Maris, Y. P. Mosse, J. P. Bradfield, et al., “Chromosome 6p22 locus associated with clinically aggressive neuroblastoma,” The New England Journal of Medicine, vol. 358, no. 24, pp. 2585–2593, 2008.
[25]  K. Wang, S. J. Diskin, H. Zhang et al., “Integrative genomics identifies LMO1 as a neuroblastoma oncogene,” Nature, vol. 469, no. 7329, pp. 216–220, 2011.
[26]  R Development Core Team, A Language and Environment For Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2008.
[27]  A. Dabney, J. D. Storey, and G. R. Warnes, Q-Value Estimation For False Discovery Rate Control. R Package Version 1, 1st edition.
[28]  J. D. Storey and R. Tibshirani, “Statistical significance for genomewide studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9440–9445, 2003.
[29]  N. Haider, R. R. Baliga, Y. Chandrashekhar, and J. Narula, “Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure. poverty in the presence of plenty,” JACC: Cardiovascular Imaging, vol. 3, no. 1, pp. 71–75, 2010.
[30]  T. Binderup, U. Knigge, A. Mellon Mogensen, C. Palnaes Hansen, and A. Kjaer, “Quantitative gene expression of somatostatin receptors and noradrenaline transporter underlying scintigraphic results in patients with neuroendocrine tumors,” Neuroendocrinology, vol. 87, no. 4, pp. 223–232, 2008.
[31]  B. Brans, G. Laureys, V. Schelfhout et al., “Activity of iodine-123 metaiodobenzylguanidine in childhood neuroblastoma: Lack of relation to tumour differentiation in vivo,” European Journal of Nuclear Medicine, vol. 25, no. 2, pp. 144–149, 1998.
[32]  K. K. Matthay, G. Yanik, J. Messina et al., “Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma,” Journal of Clinical Oncology, vol. 25, no. 9, pp. 1054–1060, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133