全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Temporal Regularized Matrix Factorization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Matrix factorization approaches have been applied to a variety of applications, from recommendation systems to multi-label learning. Standard low rank matrix factorization methods fail in cases when the data can be modeled as a time series, since they do not take into account the dependencies among factors, while EM algorithms designed for time series data are inapplicable to large multiple time series data. To overcome this, matrix factorization approaches are augmented with dynamic linear model based regularization frameworks. A major drawback in such approaches is that the exact dependencies between the latent factors are assumed to be known. In this paper, we introduce a Temporal Regularized Matrix Factorization (TRMF) method, an efficient alternating minimization scheme that not only learns the latent time series factors, but also the dependencies among the latent factors. TRMF is highly general, and subsumes several existing matrix factorization approaches for time series data. We make interesting connections to graph based matrix factorization methods in the context of learning the dependencies. Experiments on both real and synthetic data show that TRMF is highly scalable, and outperforms several existing approaches used for common large scale time series tasks.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133