全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Learning Word Meta-Embeddings by Using Ensembles of Embedding Sets

Full-Text   Cite this paper   Add to My Lib

Abstract:

Word embeddings -- distributed representations for words -- in deep learning are beneficial for many tasks in Natural Language Processing (NLP). However, different embedding sets vary greatly in quality and characteristics of the captured semantics. Instead of relying on a more advanced algorithm for embedding learning, this paper proposes an ensemble approach of combining different public embedding sets with the aim of learning meta-embeddings. Experiments on word similarity and analogy tasks and on part-of-speech (POS) tagging show better performance of meta-embeddings compared to individual embedding sets. One advantage of meta-embeddings is that they have increased coverage of the vocabulary. We will release our meta-embeddings publicly.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133