全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Are resultant methods numerically unstable for multidimensional rootfinding?

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hidden-variable resultant methods are a class of algorithms for solving multidimensional polynomial rootfinding problems. In two dimensions, when significant care is taken, they are competitive practical rootfinders. However, in higher dimensions they are known to miss zeros, calculate roots to low precision, and introduce spurious solutions. We show that the hidden-variable resultant method based on the Cayley (Dixon or B\'{e}zout) resultant is inherently and spectacularly numerically unstable by a factor that grows exponentially with the dimension. We also show that the Sylvester resultant for solving bivariate polynomial systems can square the condition number of the problem. In other words, two popular hidden-variable resultant methods are numerically unstable, and this mathematically explains the difficulties that are frequently reported by practitioners. Along the way, we prove that the Cayley resultant is a generalization of Cramer's rule for solving linear systems and generalize Clenshaw's algorithm to an evaluation scheme for polynomials expressed in a degree-graded polynomial basis.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133