全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Empirical Comparison of SVM and Some Supervised Learning Algorithms for Vowel recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, we conduct a study on the performance of some supervised learning algorithms for vowel recognition. This study aims to compare the accuracy of each algorithm. Thus, we present an empirical comparison between five supervised learning classifiers and two combined classifiers: SVM, KNN, Naive Bayes, Quadratic Bayes Normal (QDC) and Nearst Mean. Those algorithms were tested for vowel recognition using TIMIT Corpus and Mel-frequency cepstral coefficients (MFCCs).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133