全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

FAQ-based Question Answering via Word Alignment

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we propose a novel word-alignment-based method to solve the FAQ-based question answering task. First, we employ a neural network model to calculate question similarity, where the word alignment between two questions is used for extracting features. Second, we design a bootstrap-based feature extraction method to extract a small set of effective lexical features. Third, we propose a learning-to-rank algorithm to train parameters more suitable for the ranking tasks. Experimental results, conducted on three languages (English, Spanish and Japanese), demonstrate that the question similarity model is more effective than baseline systems, the sparse features bring 5% improvements on top-1 accuracy, and the learning-to-rank algorithm works significantly better than the traditional method. We further evaluate our method on the answer sentence selection task. Our method outperforms all the previous systems on the standard TREC data set.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133