全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Truth Serums for Massively Crowdsourced Evaluation Tasks

Full-Text   Cite this paper   Add to My Lib

Abstract:

Incentivizing effort and eliciting truthful responses from agents in the absence of verifiability is a major challenge faced while crowdsourcing many types of evaluation tasks like labeling images, grading assignments in online courses, etc. In this paper, we propose new reward mechanisms for such settings that, unlike most previously studied mechanisms, impose minimal assumptions on the structure and knowledge of the underlying generating model, can account for heterogeneity in the agents' abilities, require no extraneous elicitation from them, and furthermore allow their beliefs to be (almost) arbitrary. Moreover, these mechanisms have the simple and intuitive structure of output agreement mechanisms, which, despite not incentivizing truthful behavior, have nevertheless been quite popular in practice. We achieve this by leveraging a typical characteristic of many of these settings, which is the existence of a large number of similar tasks.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133