全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sparsity Based Methods for Overparameterized Variational Problems

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two complementary approaches have been extensively used in signal and image processing leading to novel results, the sparse representation methodology and the variational strategy. Recently, a new sparsity based model has been proposed, the cosparse analysis framework, which may potentially help in bridging sparse approximation based methods to the traditional total-variation minimization. Based on this, we introduce a sparsity based framework for solving overparameterized variational problems. The latter has been used to improve the estimation of optical flow and also for general denoising of signals and images. However, the recovery of the space varying parameters involved was not adequately addressed by traditional variational methods. We first demonstrate the efficiency of the new framework for one dimensional signals in recovering a piecewise linear and polynomial function. Then, we illustrate how the new technique can be used for denoising and segmentation of images.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133