全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Kronecker PCA Based Spatio-Temporal Modeling of Video for Dismount Classification

DOI: 10.1117/12.2050184

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the application of KronPCA spatio-temporal modeling techniques [Greenewald et al 2013, Tsiligkaridis et al 2013] to the extraction of spatiotemporal features for video dismount classification. KronPCA performs a low-rank type of dimensionality reduction that is adapted to spatio-temporal data and is characterized by the T frame multiframe mean and covariance of p spatial features. For further regularization and improved inverse estimation, we also use the diagonally corrected KronPCA shrinkage methods we presented in [Greenewald et al 2013]. We apply this very general method to the modeling of the multivariate temporal behavior of HOG features extracted from pedestrian bounding boxes in video, with gender classification in a challenging dataset chosen as a specific application. The learned covariances for each class are used to extract spatiotemporal features which are then classified, achieving competitive classification performance.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133