全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Scalable detection of statistically significant communities and hierarchies, using message-passing for modularity

DOI: 10.1073/pnas.1409770111

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory "communities" in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature, and using an efficient Belief Propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically-significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133