全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity

DOI: 10.1007/978-3-662-44465-8_4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sensitivity, certificate complexity and block sensitivity are widely used Boolean function complexity measures. A longstanding open problem, proposed by Nisan and Szegedy, is whether sensitivity and block sensitivity are polynomially related. Motivated by the constructions of functions which achieve the largest known separations, we study the relation between 1-certificate complexity and 0-sensitivity and 0-block sensitivity. Previously the best known lower bound was $C_1(f)\geq \frac{bs_0(f)}{2 s_0(f)}$, achieved by Kenyon and Kutin. We improve this to $C_1(f)\geq \frac{3 bs_0(f)}{2 s_0(f)}$. While this improvement is only by a constant factor, this is quite important, as it precludes achieving a superquadratic separation between $bs(f)$ and $s(f)$ by iterating functions which reach this bound. In addition, this bound is tight, as it matches the construction of Ambainis and Sun up to an additive constant.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133