全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evolving a Behavioral Repertoire for a Walking Robot

Full-Text   Cite this paper   Add to My Lib

Abstract:

Numerous algorithms have been proposed to allow legged robots to learn to walk. However, the vast majority of these algorithms is devised to learn to walk in a straight line, which is not sufficient to accomplish any real-world mission. Here we introduce the Transferability-based Behavioral Repertoire Evolution algorithm (TBR-Evolution), a novel evolutionary algorithm that simultaneously discovers several hundreds of simple walking controllers, one for each possible direction. By taking advantage of solutions that are usually discarded by evolutionary processes, TBR-Evolution is substantially faster than independently evolving each controller. Our technique relies on two methods: (1) novelty search with local competition, which searches for both high-performing and diverse solutions, and (2) the transferability approach, which com-bines simulations and real tests to evolve controllers for a physical robot. We evaluate this new technique on a hexapod robot. Results show that with only a few dozen short experiments performed on the robot, the algorithm learns a repertoire of con-trollers that allows the robot to reach every point in its reachable space. Overall, TBR-Evolution opens a new kind of learning algorithm that simultaneously optimizes all the achievable behaviors of a robot.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133