全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Packing a Knapsack of Unknown Capacity

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the problem of packing a knapsack without knowing its capacity. Whenever we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include it in the packing. We show that there is always a policy that packs a value within factor 2 of the optimum packing, irrespective of the actual capacity. If all items have unit density, we achieve a factor equal to the golden ratio. Both factors are shown to be best possible. In fact, we obtain the above factors using packing policies that are universal in the sense that they fix a particular order of the items and try to pack the items in this order, independent of the observations made while packing. We give efficient algorithms computing these policies. On the other hand, we show that, for any alpha>1, the problem of deciding whether a given universal policy achieves a factor of alpha is coNP-complete. If alpha is part of the input, the same problem is shown to be coNP-complete for items with unit densities. Finally, we show that it is coNP-hard to decide, for given alpha, whether a set of items admits a universal policy with factor alpha, even if all items have unit densities.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133