全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Second-Order Non-Stationary Online Learning for Regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

The goal of a learner, in standard online learning, is to have the cumulative loss not much larger compared with the best-performing function from some fixed class. Numerous algorithms were shown to have this gap arbitrarily close to zero, compared with the best function that is chosen off-line. Nevertheless, many real-world applications, such as adaptive filtering, are non-stationary in nature, and the best prediction function may drift over time. We introduce two novel algorithms for online regression, designed to work well in non-stationary environment. Our first algorithm performs adaptive resets to forget the history, while the second is last-step min-max optimal in context of a drift. We analyze both algorithms in the worst-case regret framework and show that they maintain an average loss close to that of the best slowly changing sequence of linear functions, as long as the cumulative drift is sublinear. In addition, in the stationary case, when no drift occurs, our algorithms suffer logarithmic regret, as for previous algorithms. Our bounds improve over the existing ones, and simulations demonstrate the usefulness of these algorithms compared with other state-of-the-art approaches.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133