全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ConeRANK: Ranking as Learning Generalized Inequalities

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose a new data mining approach in ranking documents based on the concept of cone-based generalized inequalities between vectors. A partial ordering between two vectors is made with respect to a proper cone and thus learning the preferences is formulated as learning proper cones. A pairwise learning-to-rank algorithm (ConeRank) is proposed to learn a non-negative subspace, formulated as a polyhedral cone, over document-pair differences. The algorithm is regularized by controlling the `volume' of the cone. The experimental studies on the latest and largest ranking dataset LETOR 4.0 shows that ConeRank is competitive against other recent ranking approaches.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133