全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Fiedler value of large planar graphs

DOI: 10.1016/j.laa.2013.05.032

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Fiedler value $\lambda_2$, also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs $G$ with $n$ vertices, denoted by $\lambda_{2\max}$, and we show the bounds $2+\Theta(\frac{1}{n^2}) \leq \lambda_{2\max} \leq 2+O(\frac{1}{n})$. We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex degree~3, and outerplanar graphs. Furthermore, we derive almost tight bounds on $\lambda_{2\max}$ for two more classes of graphs, those of bounded genus and $K_h$-minor-free graphs.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133