全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Necessity of Irrelevant Variables

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work explores the effects of relevant and irrelevant boolean variables on the accuracy of classifiers. The analysis uses the assumption that the variables are conditionally independent given the class, and focuses on a natural family of learning algorithms for such sources when the relevant variables have a small advantage over random guessing. The main result is that algorithms relying predominately on irrelevant variables have error probabilities that quickly go to 0 in situations where algorithms that limit the use of irrelevant variables have errors bounded below by a positive constant. We also show that accurate learning is possible even when there are so few examples that one cannot determine with high confidence whether or not any individual variable is relevant.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133