全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Data Driven Approach to Query Expansion in Question Answering

Full-Text   Cite this paper   Add to My Lib

Abstract:

Automated answering of natural language questions is an interesting and useful problem to solve. Question answering (QA) systems often perform information retrieval at an initial stage. Information retrieval (IR) performance, provided by engines such as Lucene, places a bound on overall system performance. For example, no answer bearing documents are retrieved at low ranks for almost 40% of questions. In this paper, answer texts from previous QA evaluations held as part of the Text REtrieval Conferences (TREC) are paired with queries and analysed in an attempt to identify performance-enhancing words. These words are then used to evaluate the performance of a query expansion method. Data driven extension words were found to help in over 70% of difficult questions. These words can be used to improve and evaluate query expansion methods. Simple blind relevance feedback (RF) was correctly predicted as unlikely to help overall performance, and an possible explanation is provided for its low value in IR for QA.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133