全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Are we there yet? When to stop a Markov chain while generating random graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Markov chains are a convenient means of generating realizations of networks, since they require little more than a procedure for rewiring edges. If a rewiring procedure exists for generating new graphs with specified statistical properties, then a Markov chain sampler can generate an ensemble of graphs with prescribed characteristics. However, successive graphs in a Markov chain cannot be used when one desires independent draws from the distribution of graphs; the realizations are correlated. Consequently, one runs a Markov chain for N iterations before accepting the realization as an independent sample. In this work, we devise two methods for calculating N. They are both based on the binary "time-series" denoting the occurrence/non-occurrence of edge (u, v) between vertices u and v in the Markov chain of graphs generated by the sampler. They differ in their underlying assumptions. We test them on the generation of graphs with a prescribed joint degree distribution. We find the N proportional |E|, where |E| is the number of edges in the graph. The two methods are compared by sampling on real, sparse graphs with 10^3 - 10^4 vertices.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133