全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spanning trees with many leaves: new lower bounds in terms of number of vertices of degree~3 and at least~4

DOI: 10.1007/s10958-014-1691-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove, that every connected graph with $s$ vertices of degree 3 and $t$ vertices of degree at least~4 has a spanning tree with at least ${2\over 5}t +{1\over 5}s+\alpha$ leaves, where $\alpha \ge {8\over 5}$. Moreover, $\alpha \ge 2$ for all graphs besides three exclusions. All exclusion are regular graphs of degree~4, they are explicitly described in the paper. We present infinite series of graphs, containing only vertices of degrees~3 and~4, for which the maximal number of leaves in a spanning tree is equal for ${2\over 5}t +{1\over 5}s+2$. Therefore we prove that our bound is tight.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133