全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Large Scale Spectral Clustering Using Approximate Commute Time Embedding

DOI: 10.1007/978-3-642-33492-4_4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spectral clustering is a novel clustering method which can detect complex shapes of data clusters. However, it requires the eigen decomposition of the graph Laplacian matrix, which is proportion to $O(n^3)$ and thus is not suitable for large scale systems. Recently, many methods have been proposed to accelerate the computational time of spectral clustering. These approximate methods usually involve sampling techniques by which a lot information of the original data may be lost. In this work, we propose a fast and accurate spectral clustering approach using an approximate commute time embedding, which is similar to the spectral embedding. The method does not require using any sampling technique and computing any eigenvector at all. Instead it uses random projection and a linear time solver to find the approximate embedding. The experiments in several synthetic and real datasets show that the proposed approach has better clustering quality and is faster than the state-of-the-art approximate spectral clustering methods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133