全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interleukin-1 Two-Locus Haplotype Is Strongly Associated with Severe Chronic Periodontitis among Yemenis

DOI: 10.1155/2012/231309

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aim. To assess IL-1A C[?889]T and IL-1B C[3954]T genotypes as well as haplotypes in relation to sever chronic periodontitis (SCP) among Yemenis. Materials and Methods. 40 cases with SCP and 40 sex- and age-matched controls were included; all were nonsmokers and free of systemic diseases. Genotyping at each locus was performed using an established PCR-RFLP assay. The Haploview and SimHap software were used to assess data for Hardy-Weinberg's equilibrium (HWE) and linkage disequilibrium (LD) and to obtain subject-level haplotypes. Multiple logistic regression was used to seek for associations in dominant, additive, and recessive models. Results. Mean plaque index (MPI) showed the strongest association with SCP ( ). A significant LD was observed in the cases ( and ). The genotype at each locus showed significant association with SCP in the recessive model (TT versus ) even after adjustment for MPI ( & 461, resp.). The C-T haplotype conferred protection against SCP in a dominant manner ( ). On the other hand, the T-T haplotype in double dose (recessive model) showed strong association with CP ( ). Conclusions. IL-1 two-locus haplotype is associated with SCP in Yemenis. Haplotype-based analysis may be more suited for use in genetic association studies of periodontitis. 1. Introduction Chronic periodontitis is currently viewed as an immunologically mediated destruction of tooth supporting tissues, the periodontium, provoked by specific pathogenic bacterial consortia in subgingival biofilm [1]. However, the occurrence, extent, and severity of the destructive process are dependent on the individual’s susceptibility to the disease, which is in turn influenced by risk factors independent of the microbial challenge [2]. Environmental factors, such as cigarette smoking, and systemic diseases, such as diabetes, are well-established, classical examples of such risk modifiers [3]. Lately, the role of genetics in defining host susceptibility to chronic periodontitis has drawn much attention. Initial evidence for a significant genetic element in the pathogenesis of periodontitis came from twin- and family studies, in which chronic periodontitis was shown to have around 50% heritability [4, 5]. Since then, many genes, such as the cytokine gene family, pattern-recognition receptor genes and the vitamin D receptor gene, have been explored for allelic variants that may be associated with chronic as well as aggressive periodontitis [6]. Because some cytokines, particularly the IL-1 and TNF-A proteins, are strongly implicated in the pathogenesis of chronic periodontitis [7],

References

[1]  R. P. Darveau, “Periodontitis: a polymicrobial disruption of host homeostasis,” Nature Reviews Microbiology, vol. 8, no. 7, pp. 481–490, 2010.
[2]  K. S. Kornman, “Mapping the pathogenesis of periodontitis: a new look,” Journal of Periodontology, vol. 79, no. 8, supplement, pp. 1560–1568, 2008.
[3]  T. E. Van Dyke and D. Sheilesh, “Risk factors for periodontitis,” Journal of the International Academy of Periodontology, vol. 7, no. 1, pp. 3–7, 2005.
[4]  B. S. Michalowicz, D. Aeppli, J. G. Virag et al., “Periodontal findings in adult twins,” Journal of Periodontology, vol. 62, no. 5, pp. 293–299, 1991.
[5]  B. S. Michalowicz, S. R. Diehl, J. C. Gunsolley et al., “Evidence of a substantial genetic basis for risk of adult periodontitis,” Journal of Periodontology, vol. 71, no. 11, pp. 1699–1707, 2000.
[6]  M. L. Laine, B. G. Loos, and W. Crielaard, “Gene polymorphisms in chronic periodontitis,” International Journal of Dentistry, vol. 2010, Article ID 324719, 22 pages, 2010.
[7]  D. T. Graves and D. Cochran, “The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction,” Journal of Periodontology, vol. 74, no. 3, pp. 391–401, 2003.
[8]  J. J. Taylor, P. M. Preshaw, and P. T. Donaldson, “Cytokine gene polymorphism and immunoregulation in periodontal disease,” Periodontology 2000, vol. 35, pp. 158–182, 2004.
[9]  K. S. Kornman, A. Crane, H. Y. Wang, et al., “The interleukin-1 genotype as a severity factor in adult periodontal disease,” Journal of Clinical Periodontology, vol. 24, no. 1, pp. 72–77, 1997.
[10]  G. K. Nikolopoulos, N. L. Dimou, S. J. Hamodrakas, and P. G. Bagos, “Cytokine gene polymorphisms in periodontal disease: a meta-analysis of 53 studies including 4178 cases and 4590 controls,” Journal of Clinical Periodontology, vol. 35, no. 9, pp. 754–767, 2008.
[11]  H. Loee and J. Silness, “Periodontal disease in pregnancy. I. Prevalence and severity,” Acta Odontologica Scandinavica, vol. 21, pp. 533–551, 1963.
[12]  L. Excoffier and M. Slatkin, “Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population,” Molecular Biology and Evolution, vol. 12, no. 5, pp. 921–927, 1995.
[13]  N. Risch, E. Burchard, E. Ziv, and H. Tang, “Categorization of humans in biomedical research: genes, race and disease,” Genome Biology, vol. 3, no. 7, article comment2007-comment2007.12, 2002.
[14]  A. S. Schafer, S. Jepsen, and B. G. Loos, “Periodontal genetics: a decade of genetic association studies mandates better study designs,” Journal of Clinical Periodontology, vol. 38, no. 2, pp. 103–107, 2011.
[15]  O. Anusaksathien, A. Sukboon, P. Sitthiphong, and R. Teanpaisan, “Distribution of interleukin-1β+3954 and IL-1α-889 genetic variations in a Thai population group,” Journal of Periodontology, vol. 74, no. 12, pp. 1796–1802, 2003.
[16]  J. A. Karasneh, K. T. Ababneh, A. H. Taha, M. S. Al-Abbadi, and W. Ollier, “Investigation of the interleukin-1 gene cluster polymorphisms in Jordanian patients with chronic and aggressive periodontitis,” Archives of Oral Biology, vol. 56, no. 3, pp. 269–276, 2011.
[17]  D. Sakellari, S. Koukoudetsos, M. Arsenakis, and A. Konstantinidis, “Prevalence of IL-1A and IL-1B polymorphisms in a Greek population,” Journal of Clinical Periodontology, vol. 30, no. 1, pp. 35–41, 2003.
[18]  H. Duan, J. Zhang, P. Huang, and Y. Zhang, “Buccal swab: a convenient source of DNA for analysis of IL-1 gene polymorphisms,” Hua Xi Kou Qiang Yi Xue Za Zhi, vol. 19, no. 1, pp. 11–13, 2001.
[19]  H. P. Muller and K. M. Barrieshi-Nusair, “Site-specific gingival bleeding on probing in a steady-state plaque environment: influence of polymorphisms in the interleukin-1 gene cluster,” Journal of Periodontology, vol. 81, no. 1, pp. 52–61, 2010.
[20]  P. M. Brett, P. Zygogianni, G. S. Griffiths et al., “Functional gene polymorphisms in aggressive and chronic periodontitis,” Journal of Dental Research, vol. 84, no. 12, pp. 1149–1153, 2005.
[21]  E. A. Gore, J. J. Sanders, J. P. Pandey, Y. Palesch, and G. M. P. Galbraith, “Interleukin-1β+3953 allele 2: association with disease status in adult periodontitis,” Journal of Clinical Periodontology, vol. 25, no. 10, pp. 781–785, 1998.
[22]  N. J. Lopez, L. Jara, and C. Y. Valenzuela, “Association of interleukin-1 polymorphisms with periodontal disease,” Journal of Periodontology, vol. 76, no. 2, pp. 234–243, 2005.
[23]  D. Sakellari, V. Katsares, M. Georgiadou, A. Kouvatsi, M. Arsenakis, and A. Konstantinidis, “No correlation of five gene polymorphisms with periodontal conditions in a Greek population,” Journal of Clinical Periodontology, vol. 33, no. 11, pp. 765–770, 2006.
[24]  J. Wagner, W. E. Kaminski, C. Aslanidis et al., “Prevalence of OPG and IL-1 gene polymorphisms in chronic periodontitis,” Journal of Clinical Periodontology, vol. 34, no. 10, pp. 823–827, 2007.
[25]  S. Shiroddria, J. Smith, I. J. McKay, C. N. Kennett, and F. J. Hughes, “Polymorphisms in the IL-1A gene are correlated with levels of interleukin-1α protein in gingival crevicular fluid of teeth with severe periodontal disease,” Journal of Dental Research, vol. 79, no. 11, pp. 1864–1869, 2000.
[26]  G. C. Armitage, Y. Wu, H. Y. Wang, J. Sorrell, F. S. di Giovine, and G. W. Duff, “Low prevalence of a periodontitis-associated interleukin-1 composite genotype in individuals of Chinese heritage,” Journal of Periodontology, vol. 71, no. 2, pp. 164–171, 2000.
[27]  T. Kobayashi, S. Ito, T. Kuroda et al., “The interleukin-1 and Fcγ receptor gene polymorphisms in Japanese patients with rheumatoid arthritis and periodontitis,” Journal of Periodontology, vol. 78, no. 12, pp. 2311–2318, 2007.
[28]  Y. Soga, F. Nishimura, H. Ohyama, H. Maeda, S. Takashiba, and Y. Murayama, “Tumor necrosis factor-alpha gene (TNF-α) -1031/-863, -857 single-nucleotide polymorphisms (SNPs) are associated with severe adult periodontitis in Japanese,” Journal of Clinical Periodontology, vol. 30, no. 6, pp. 524–531, 2003.
[29]  Z. Radovanovic, N. Shah, and J. Behbehani, “Prevalence and social correlates of consanguinity in Kuwait,” Annals of Saudi Medicine, vol. 19, no. 3, pp. 206–210, 1999.
[30]  N. J. Lopez, C. Y. Valenzuela, and L. Jara, “Interleukin-1 gene cluster polymorphisms associated with periodontal disease in type 2 diabetes,” Journal of Periodontology, vol. 80, no. 10, pp. 1590–1598, 2009.
[31]  M. A. Rogers, L. Figliomeni, K. Baluchova et al., “Do interleukin-1 polymorphisms predict the development of periodontitis or the success of dental implants?” Journal of Periodontal Research, vol. 37, no. 1, pp. 37–41, 2002.
[32]  K. Geismar, C. Enevold, L. K. Sorensen et al., “Involvement of interleukin-1 genotypes in the association of coronary heart disease with periodontitis,” Journal of Periodontology, vol. 79, no. 12, pp. 2322–2330, 2008.
[33]  P. R. Moreira, J. E. Costa, R. S. Gomez, K. J. Gollob, and W. O. Dutra, “The IL1A (-889) gene polymorphism is associated with chronic periodontal disease in a sample of Brazilian individuals,” Journal of Periodontal Research, vol. 42, no. 1, pp. 23–30, 2007.
[34]  P. R. Moreira, A. R. de Sa, G. M. Xavier et al., “A functional interleukin-1β gene polymorphism is associated with chronic periodontitis in a sample of Brazilian individuals,” Journal of Periodontal Research, vol. 40, no. 4, pp. 306–311, 2005.
[35]  P. S. G. Prakash and D. J. Victor, “Interleukin-1b gene polymorphism and its association with chronic periodontitis in South Indian population,” International Journal of Genetics and Molecular Biology, vol. 2, no. 8, pp. 179–183, 2010.
[36]  S. B. Ferreira Jr., A. P. F. Trombone, C. E. Repeke et al., “An interleukin-1β (IL-1β) single-nucleotide polymorphism at position 3954 and red complex periodontopathogens independently and additively modulate the levels of IL-1β in diseased periodontal tissues,” Infection and Immunity, vol. 76, no. 8, pp. 3725–3734, 2008.
[37]  P. C. Trevilatto, A. P. de Souza Pardo, R. M. Scarel-Caminaga et al., “Association of IL1 gene polymorphisms with chronic periodontitis in Brazilians,” Archives of Oral Biology, vol. 56, no. 1, pp. 54–62, 2011.
[38]  A. A. Agrawal, A. Kapley, R. K. Yeltiwar, and H. J. Purohit, “Assessment of single nucleotide polymorphism at IL-1A+4845 and IL-1B+3954 as genetic susceptibility test for chronic periodontitis in Maharashtrian ethnicity,” Journal of Periodontology, vol. 77, no. 9, pp. 1515–1521, 2006.
[39]  M. J. McDevitt, H. Y. Wang, C. Knobelman et al., “Interleukin-1 genetic association with periodontitis in clinical practice,” Journal of Periodontology, vol. 71, no. 2, pp. 156–163, 2000.
[40]  P. Meisel, C. Schwahn, D. Gesch, O. Bernhardt, U. John, and T. Kocher, “Dose-effect relation of smoking and the interleukin-1 gene polymorphism in periodontal disease,” Journal of Periodontology, vol. 75, no. 2, pp. 236–242, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133