全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficient Multicore Collaborative Filtering

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes the solution method taken by LeBuSiShu team for track1 in ACM KDD CUP 2011 contest (resulting in the 5th place). We identified two main challenges: the unique item taxonomy characteristics as well as the large data set size.To handle the item taxonomy, we present a novel method called Matrix Factorization Item Taxonomy Regularization (MFITR). MFITR obtained the 2nd best prediction result out of more then ten implemented algorithms. For rapidly computing multiple solutions of various algorithms, we have implemented an open source parallel collaborative filtering library on top of the GraphLab machine learning framework. We report some preliminary performance results obtained using the BlackLight supercomputer.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133