全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A generalization of Hopcroft-Karp algorithm for semi-matchings and covers in bipartite graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

An $(f,g)$-semi-matching in a bipartite graph $G=(U \cup V,E)$ is a set of edges $M \subseteq E$ such that each vertex $u\in U$ is incident with at most $f(u)$ edges of $M$, and each vertex $v\in V$ is incident with at most $g(v)$ edges of $M$. In this paper we give an algorithm that for a graph with $n$ vertices and $m$ edges, $n\le m$, constructs a maximum $(f,g)$-semi-matching in running time $O(m\cdot \min (\sqrt{\sum_{u\in U}f(u)}, \sqrt{\sum_{v\in V}g(v)}))$. Using the reduction of [5], our result on maximum $(f,g)$-semi-matching problem directly implies an algorithm for the optimal semi-matching problem with running time $O(\sqrt{n}m \log n)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133