全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Algorithms for Internal Validation Clustering Measures in the Post Genomic Era

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inferring cluster structure in microarray datasets is a fundamental task for the -omic sciences. A fundamental question in Statistics, Data Analysis and Classification, is the prediction of the number of clusters in a dataset, usually established via internal validation measures. Despite the wealth of internal measures available in the literature, new ones have been recently proposed, some of them specifically for microarray data. In this dissertation, a study of internal validation measures is given, paying particular attention to the stability based ones. Indeed, this class of measures is particularly prominent and promising in order to have a reliable estimate the number of clusters in a dataset. For those measures, a new general algorithmic paradigm is proposed here that highlights the richness of measures in this class and accounts for the ones already available in the literature. Moreover, some of the most representative validation measures are also considered. Experiments on 12 benchmark datasets are performed in order to assess both the intrinsic ability of a measure to predict the correct number of clusters in a dataset and its merit relative to the other measures. The main result is a hierarchy of internal validation measures in terms of precision and speed, highlighting some of their merits and limitations not reported before in the literature. This hierarchy shows that the faster the measure, the less accurate it is. In order to reduce the time performance gap between the fastest and the most precise measures, the technique of designing fast approximation algorithms is systematically applied. The end result is a speed-up of many of the measures studied here that brings the gap between the fastest and the most precise within one order of magnitude in time, with no degradation in their prediction power. Prior to this work, the time gap was at least two orders of magnitude.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133