全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Personalized Event-Based Surveillance and Alerting Support for the Assessment of Risk

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a typical Event-Based Surveillance setting, a stream of web documents is continuously monitored for disease reporting. A structured representation of the disease reporting events is extracted from the raw text, and the events are then aggregated to produce signals, which are intended to represent early warnings against potential public health threats. To public health officials, these warnings represent an overwhelming list of "one-size-fits-all" information for risk assessment. To reduce this overload, two techniques are proposed. First, filtering signals according to the user's preferences (e.g., location, disease, symptoms, etc.) helps reduce the undesired noise. Second, re-ranking the filtered signals, according to an individual's feedback and annotation, allows a user-specific, prioritized ranking of the most relevant warnings. We introduce an approach that takes into account this two-step process of: 1) filtering and 2) re-ranking the results of reporting signals. For this, Collaborative Filtering and Personalization are common techniques used to support users in dealing with the large amount of information that they face.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133