Multiple Sclerosis (MS) is a highly polymorphic disease characterized by different neurologic signs and symptoms. In MS, racial and genetic factors may play an important role in the geographic distribution of this disease. Studies have reported the presence of several protective alleles against the development of autoimmune disorders. In the case of MS, however, they help define MS as a complex disease, and confirm the importance of environmental agents as an independent variable not associated with ethnicity. We carried out an on-site epidemiological study to confirm the absence of MS or NMO among Lacandonians, a pure Amerindian ethnic group in Mexico. We administered a structured interview to 5,372 Lacandonians to assess by family background any clinical data consistent with the presence of a prior demyelinating event. Every participating subject underwent a comprehensive neurological examination by a group of three members of the research team with experience in the diagnosis and treatment of demyelinating disorders to detect clinical signs compatible with a demyelinating disease. We did not find any clinical signs compatible with multiple sclerosis among study participants. 1. Introduction MS is a highly polymorphic disease characterized by diverse neurological signs and symptoms (e.g., optical neuritis, dizziness, disturbances in bladder control, peripheral sensory neuropathies, and/or limb weakness). In most patients (80%) MS has a relapse-remitting pattern, whereas in a minority it can be primary progressive (6%), secondary progressive (10%), or progressive relapsing (4%). MS incidence rates vary significantly depending on geographic location and ethnic origin, ranging from 1?:?500 in Northern Europe to 1?:?100,000 in tropical countries [1]. Individuals migrating from a tropical region to Northern Europe seem to maintain a low risk. Although a predisposition to develop MS may be hereditary, environmental factors display a significant interaction with genetic factors to help determine disease outcome. An effect of shared environment has not been yet proven, and little is known about potential environmental triggers (e.g., viral infections, including Epstein-Barr or Varicella Zoster virus) [2]. Genes associated with a predisposition to develop MS are being actively sought following two main approaches: broad genomic screenings and targeted gene searches. Over 15 research groups have reported linkages of chromosomal regions with MS: chromosomes 6p (on which HLA is located), 5p, 5q, 17q, and 19q [3–5]. However more than half of the human genome has
References
[1]
J. L. Haines, “Susceptibility loci for multiple sclerosis,” in Proceedings of the Program and abstracts of the 54th Annual Meeting of the American Society of Human Genetics, Toronto, Ontario, Canada, October 2004.
[2]
M. Rodríguez-Violante, G. Ordo?ez, J. R. Bermudez, J. Sotelo, and T. Corona, “Association of a history of varicella virus infection with multiple sclerosis,” Clinical Neurology and Neurosurgery, vol. 111, no. 1, pp. 54–56, 2009.
[3]
S. J. Kenealy, M. A. Pericak-Vance, and J. L. Haines, “The genetic epidemiology of multiple sclerosis,” Journal of Neuroimmunology, vol. 143, no. 1-2, pp. 7–12, 2003.
[4]
T. Corona, J. L. Guerrero-Camacho, M. E. Alonso-Vilatela, and J. D. J. Flores-Rivera, “The absence of a relation between apolipoprotein E genotypes and the severity of multiple sclerosis in Mexican patients,” Revista de Neurologia, vol. 50, no. 1, pp. 19–22, 2010.
[5]
J. L. Haines, Y. Bradford, M. E. Garcia et al., “Multiple susceptibility loci for multiple sclerosis,” Human Molecular Genetics, vol. 11, no. 19, pp. 2251–2256, 2002.
[6]
S. E. Baranzini and D. Nickles, “Genetics of multiple sclerosis: swimming in an ocean of data,” Current Opinion in Neurology, vol. 25, no. 3, pp. 239–245, 2012.
[7]
S. Zepeda-Gómez, A. Montao-Loza, J. C. Zapata-Colindres et al., “HLA-DR Allele frequencies in mexican mestizos with autoimmune liver diseases including overlap syndromes,” Immunological Investigations, vol. 38, no. 3-4, pp. 276–283, 2009.
[8]
J. A. Ruíz-Morales, G. Vargas-Alarcón, P. O. Flores-Villanueva et al., “HLA-DRB1 alleles encoding the “shared epitope” are associated with susceptibility to developing rheumatoid arthritis whereas HLA-DRB1 alleles encoding an aspartic acid at position 70 of the β-chain are protective in Mexican Mestizos,” Human Immunology, vol. 65, no. 3, pp. 262–269, 2004.
[9]
“Proceedings of the first congress of the Latin American Committee for Treatment and Research in Multiple Sclerosis. November 11–13, 2000,” Revista Neurológica Argentina. In press.
[10]
V. M. Rivera and J. A. C. Gómez, “Multiple sclerosis in Latin-America,” Médico Interamericano, vol. 19, pp. 458–465, 2000.
[11]
J. L. Sánchez, L. G. Palacio, A. Londo?o, et al., “Esclerosis múltiple: aproximación epidemiológico genética en habitantes de Antioquía Colombia,” Acta Neurológica Colombiana, vol. 14, pp. 33–38, 1998.
[12]
D. D. Kostyu and D. B. Amos, “Mysteries of the Amerindians,” Tissue Antigens, vol. 17, no. 1, pp. 111–123, 1981.
[13]
J. O. Fleming and T. D. Cook, “Multiple sclerosis and the hygiene hypothesis,” Neurology, vol. 67, no. 11, pp. 2085–2086, 2006.
[14]
J. Correale and M. Farez, “Association between parasite infection and immune responses in multiple sclerosis,” Annals of Neurology, vol. 61, no. 2, pp. 97–108, 2007.