全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electricity Demand Forecasting by Multi-Task Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

We explore the application of kernel-based multi-task learning techniques to forecast the demand of electricity in multiple nodes of a distribution network. We show that recently developed output kernel learning techniques are particularly well suited to solve this problem, as they allow to flexibly model the complex seasonal effects that characterize electricity demand data, while learning and exploiting correlations between multiple demand profiles. We also demonstrate that kernels with a multiplicative structure yield superior predictive performance with respect to the widely adopted (generalized) additive models. Our study is based on residential and industrial smart meter data provided by the Irish Commission for Energy Regulation (CER).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133