全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Residual Component Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Probabilistic principal component analysis (PPCA) seeks a low dimensional representation of a data set in the presence of independent spherical Gaussian noise, Sigma = (sigma^2)*I. The maximum likelihood solution for the model is an eigenvalue problem on the sample covariance matrix. In this paper we consider the situation where the data variance is already partially explained by other factors, e.g. covariates of interest, or temporal correlations leaving some residual variance. We decompose the residual variance into its components through a generalized eigenvalue problem, which we call residual component analysis (RCA). We show that canonical covariates analysis (CCA) is a special case of our algorithm and explore a range of new algorithms that arise from the framework. We illustrate the ideas on a gene expression time series data set and the recovery of human pose from silhouette.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133