全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2004 

Self-Organized Forest-Fires near the Critical Time

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a forest-fire model which, somewhat informally, is described as follows: Each site (vertex) of the square lattice is either vacant or occupied by a tree.Vacant sites become occupied at rate 1. Further, each site is hit by lightningat rate lambda. This lightning instantaneously destroys (makes vacant) the occupied cluster of the site. This model is closely related to the Drossel-Schwabl forest-fire model, which has received much attention in the physics literature. The most interesting behaviour seems to occur when the lightning rate goes to zero. In the physics literature it is believed that then the system has so-called self-organized critical behaviour. We let the system start with all sites vacant and study, for positive but small lambda,the behaviour near the `critical time' tc; that is, the time after which in the modified system without lightning an infinite occupied cluster would emerge. Intuitively one might expect that if, for fixed t > tc, we let simultaneously lambda tend to 0 and m to infinity, the probability that some tree at distance smaller than m from O is burnt before time t goes to 1. However, we show that under a percolation-like assumption (which we can not prove but believe to be true) this intuition is false. We compare with the case where the square lattice is replaced by the directed binary tree, and pose some natural open problems.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133