全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2004 

Depth Two and the Galois Coring

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the cyclic module ${}_SR$ for a ring extension $A \| B$ with centralizer $R$ and bimodule endomorphism ring $S = End {}_BA_B$. We show that if $A \| B$ is an H-separable Hopf subalgebra, then $B$ is a normal Hopf subalgebra of $A$. We observe from math.RA/0107064 and math.RA/0108067 depth two in the role of noncommutative normality (as in field theory) in a depth two separable Frobenius characterization of irreducible semisimple-Hopf-Galois extensions. We prove that a depth two extension has a Galois $A$-coring structure on $A \o_R T$ where $T$ is the right $R$-bialgebroid dual to $S$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133