全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2002 

End-to-end Distance from the Green's Function for a Hierarchical Self-Avoiding Walk in Four Dimensions

DOI: 10.1007/s00220-003-0885-6

Full-Text   Cite this paper   Add to My Lib

Abstract:

In [BEI] we introduced a Levy process on a hierarchical lattice which is four dimensional, in the sense that the Green's function for the process equals 1/x^2. If the process is modified so as to be weakly self-repelling, it was shown that at the critical killing rate (mass-squared) \beta^c, the Green's function behaves like the free one. - Now we analyze the end-to-end distance of the model and show that its expected value grows as a constant times \sqrt{T} log^{1/8}T (1+O((log log T)/log T)), which is the same law as has been conjectured for self-avoiding walks on the simple cubic lattice Z^4. The proof uses inverse Laplace transforms to obtain the end-to-end distance from the Green's function, and requires detailed properties of the Green's function throughout a sector of the complex \beta plane. These estimates are derived in a companion paper [math-ph/0205028].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133