CYP2C19 is a polymorphic enzyme involved in the metabolism of clinically important drugs. Genotype-phenotype association studies of CYP2C19 have reported wide ranges in the metabolic ratios of its substrates. These discrepancies could be attributed to the variations in the promoter region and this aspect has been reported recently. The observations in the recent reports on the influence of promoter region variants on the metabolism of CYP2C19 substrates might also have been influenced by the copy number variations of CYP2C19. In this paper, we describe copy number variations of CYP2C19 using real-time polymerase chain reaction by comparative Ct method. No copy number variations were observed in the south Indian population indicating the observed discrepancies in genotype-phenotype association studies might be due to the regulatory region polymorphisms as reported earlier. 1. Introduction The CYP2C19 is a clinically important drug metabolizing enzyme encoded by polymorphic CYP2C19 gene on chromosome 10, playing a major role in metabolizing about 5% of the clinically used drugs [1–5]. Owing to genetic polymorphisms, considerable interindividual variability exists in the metabolic activity of this enzyme [6]. About 43 variant alleles of CYP2C19 have been reported till date (http://www.imm.ki.se/CYPalleles, access date: 28th March 2012). Most of the genotype-phenotype association studies of CYP2C19 in different ethnic groups were focused on exonic region variants, but the promoter region variants and copy number variations were not explored to a greater extent [7–11]. Based on the findings of genotype-phenotype association studies, subjects were categorized as poor metabolizers (PMs), having either of the most commonly seen defective alleles of CYP2C19, namely, c.636G>A (*3 allele; rs4986893) or c.681G>A (*2 allele; rs4244285); extensive metabolizers (EMs) carrying no variant alleles; ultra-rapid metabolizers (UMs) carrying ?806C>T and ?3402C>T variations (*17 allele) in the promoter region of CYP2C19 [12]. Thus, the activity of CYP2C19 varies with the presence or absence of certain variations in its gene which also varies in its distribution among different ethnic groups [8, 13–18]. CYP2C19 activity differs among extensive metabolizers (EM), demonstrated by a wide range in the metabolic ratios (MR) of probe drugs, and some discrepancies were commonly noted in these reports [11–20]. These differences could be attributed to rare defective alleles or to polymorphisms in the regulatory region of CYP2C19 gene and copy number variants of the gene [20, 21]. Few
References
[1]
J. A. Goldstein, “Clinical relevance of genetic polymorphisms in the human CYP2C subfamily,” British Journal of Clinical Pharmacology, vol. 52, no. 4, pp. 349–355, 2001.
[2]
M. Ingelman-Sundberg, S. C. Sim, A. Gomez, and C. Rodriguez-Antona, “Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects,” Pharmacology and Therapeutics, vol. 116, no. 3, pp. 496–526, 2007.
[3]
L. Bertilsson, M. L. Dahl, M. Ingelman-Sundberg, I. Johansson, and F. Sj?qvist, “Interindividual and interethnic differences in polymorphic drug oxidation-implications for drug therapy with focus on psychoactive drugs,” in Advances in Drug Metabolism in Man, G. M. Pacific and G. N. Fracchia, Eds., pp. 85–136, Office for Official Publications of the European Communities, Luxembourg, 1995.
[4]
K. Br?sen, S. M. F. de Morais, U. A. Meyer, and J. A. Goldstein, “A multifamily study on the relationship between CYP2C19 genotype and S-mephenytoin oxidation phenotype,” Pharmacogenetics, vol. 5, no. 5, pp. 312–317, 1995.
[5]
K. J. Ellis, G. A. Stouffer, H. L. McLeod, and C. R. Lee, “Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition: US FDA recommendations,” Pharmacogenomics, vol. 10, no. 11, pp. 1799–1817, 2009.
[6]
N. Murayama, N. Imai, T. Nakane, M. Shimizu, and H. Yamazaki, “Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes,” Biochemical Pharmacology, vol. 73, no. 12, pp. 2020–2026, 2007.
[7]
N. He, F. X. Yan, S. L. Huang et al., “CYP2C19 genotype and S-mephenytoin 4′-hydroxylation phenotype in a Chinese Dai population,” European Journal of Clinical Pharmacology, vol. 58, no. 1, pp. 15–18, 2002.
[8]
Z. Desta, X. Zhao, J. G. Shin, and D. A. Flockhart, “Clinical significance of the cytochrome P450 2C19 genetic polymorphism,” Clinical Pharmacokinetics, vol. 41, no. 12, pp. 913–958, 2002.
[9]
M. Chang, M. L. Dahl, G. Tybring, E. G?tharson, and L. Bertilsson, “Use of omeprazole as a probe drug for CYP2C19 phenotype in swedish caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype,” Pharmacogenetics, vol. 5, no. 6, pp. 358–363, 1995.
[10]
J. M. Hoskins, G. M. Shenfield, and A. S. Gross, “Concordance between proguanil phenotype and CYP2C19 genotype in Chinese,” European Journal of Clinical Pharmacology, vol. 59, no. 8-9, pp. 611–614, 2003.
[11]
M. Chang, G. Tybring, M. L. Dahl et al., “Interphenotype differences in disposition and effect on gastrin levels of omeprazole suitability of omeprazole as a probe for CYP2C19,” British Journal of Clinical Pharmacology, vol. 39, no. 5, pp. 511–518, 1995.
[12]
S. C. Sim, C. Risinger, M. L. Dahl et al., “A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants,” Clinical Pharmacology and Therapeutics, vol. 79, no. 1, pp. 103–113, 2006.
[13]
J. Blaisdell, H. Mohrenweiser, J. Jackson et al., “Identification and functional characterization of new potentially defective alleles of human CYP2C19,” Pharmacogenetics, vol. 12, no. 9, pp. 703–711, 2002.
[14]
M. Arefayene, T. C. Skaar, X. Zhao et al., “Sequence diversity and functional characterization of the 5′-regulatory region of human CYP2C19,” Pharmacogenetics, vol. 13, no. 4, pp. 199–206, 2003.
[15]
N. Hanioka, Y. Tsuneto, Y. Saito et al., “Functional characterization of two novel CYP2C19 variants (CYP2C19*18 and CYP2C19*19) found in a Japanese population,” Xenobiotica, vol. 37, no. 4, pp. 342–355, 2007.
[16]
T. Furuta, N. Shirai, M. Sugimoto, A. Nakamura, A. Hishida, and T. Ishizaki, “Influence of CYP2C19 pharmacogenetic polymorphism on proton pump inhibitor-based therapies,” Drug Metabolism and Pharmacokinetics, vol. 20, no. 3, pp. 153–167, 2005.
[17]
D. Taubert, H. J. Bouman, and J. W. Van Werkum, “Cytochrome P-450 polymorphisms and response to clopidogrel,” The New England Journal of Medicine, vol. 360, no. 21, pp. 2249–2250, 2009.
[18]
N. B. Norgard, K. D. Mathews, and G. C. Wall, “Drug-drug interaction between clopidogrel and the proton pump inhibitors,” Annals of Pharmacotherapy, vol. 43, no. 7-8, pp. 1266–1274, 2009.
[19]
M. J. Kim, J. S. Bertino Jr., A. Gaedigk, Y. Zhang, E. M. Sellers, and A. N. Nafziger, “Effect of sex and menstrual cycle phase on cytochrome P450 2C19 activity with omeprazole used as a biomarker,” Clinical Pharmacology and Therapeutics, vol. 72, no. 2, pp. 192–199, 2002.
[20]
J. Rosemary, C. Adithan, N. Padmaja, C. H. Shashindran, N. Gerard, and R. Krishnamoorthy, “The effect of the CYP2C19 genotype on the hydroxylation index of omeprazole in South Indians,” European Journal of Clinical Pharmacology, vol. 61, no. 1, pp. 19–23, 2005.
[21]
T. Pastinen and T. J. Hudson, “Cis-acting regulatory variation in the human genome,” Science, vol. 306, no. 5696, pp. 647–650, 2004.
[22]
H. Fukushima-Uesaka, Y. Saito, K. Maekawa et al., “Genetic variations and haplotypes of CYP2C19 in a Japanese population,” Drug Metabolism and Pharmacokinetics, vol. 20, no. 4, pp. 300–307, 2005.
[23]
C. R.. Satyanarayana, A. Devendran, M. Jayaraman et al., “Influence of the genetic polymorphisms in the 5′ flanking and exonic regions of CYP2C19 on proguanil oxidation,” Drug Metabolism and Pharmacokinetics, vol. 24, no. 6, pp. 537–548, 2009.
[24]
C. R. U. Satyanarayana, A. Devendran, R. Sundaram, S. D. Gopal, K. Rajagopal, and A. Chandrasekaran, “Genetic variations and haplotypes of the 5′ regulatory region of CYP2C19 in South Indian population,” Drug Metabolism and Pharmacokinetics, vol. 24, no. 2, pp. 185–193, 2009.
[25]
J. Hoebeeck, F. Speleman, and J. Vandesompele, “Real-time quantitative PCR as an alternative to southern blot or fluorescence in situ hybridization for detection of gene copy number changes,” Methods in Molecular Biology, vol. 353, pp. 205–226, 2007.
[26]
S. L?fgren, R. M. Baldwin, M. Hiratsuka et al., “Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression,” Drug Metabolism and Disposition, vol. 36, no. 5, pp. 955–962, 2008.