全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Tree-Structure Expectation Propagation for LDPC Decoding over the BEC

DOI: 10.1109/TIT.2013.2245494

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present the tree-structure expectation propagation (Tree-EP) algorithm to decode low-density parity-check (LDPC) codes over discrete memoryless channels (DMCs). EP generalizes belief propagation (BP) in two ways. First, it can be used with any exponential family distribution over the cliques in the graph. Second, it can impose additional constraints on the marginal distributions. We use this second property to impose pair-wise marginal constraints over pairs of variables connected to a check node of the LDPC code's Tanner graph. Thanks to these additional constraints, the Tree-EP marginal estimates for each variable in the graph are more accurate than those provided by BP. We also reformulate the Tree-EP algorithm for the binary erasure channel (BEC) as a peeling-type algorithm (TEP) and we show that the algorithm has the same computational complexity as BP and it decodes a higher fraction of errors. We describe the TEP decoding process by a set of differential equations that represents the expected residual graph evolution as a function of the code parameters. The solution of these equations is used to predict the TEP decoder performance in both the asymptotic regime and the finite-length regime over the BEC. While the asymptotic threshold of the TEP decoder is the same as the BP decoder for regular and optimized codes, we propose a scaling law (SL) for finite-length LDPC codes, which accurately approximates the TEP improved performance and facilitates its optimization.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133