全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

On Detection-Directed Estimation Approach for Noisy Compressive Sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we investigate a Bayesian sparse reconstruction algorithm called compressive sensing via Bayesian support detection (CS-BSD). This algorithm is quite robust against measurement noise and achieves the performance of a minimum mean square error (MMSE) estimator that has support knowledge beyond a certain SNR threshold. The key idea behind CS-BSD is that reconstruction takes a detection-directed estimation structure consisting of two parts: support detection and signal value estimation. Belief propagation (BP) and a Bayesian hypothesis test perform support detection, and an MMSE estimator finds the signal values belonging to the support set. CS-BSD converges faster than other BP-based algorithms, and it can be converted to a parallel architecture to become much faster. Numerical results are provided to verify the superiority of CS-BSD compared to recent algorithms.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133