|
Mathematics 2011
Counting Humps in Motzkin pathsAbstract: In this paper we study the number of humps (peaks) in Dyck, Motzkin and Schr\"{o}der paths. Recently A. Regev noticed that the number of peaks in all Dyck paths of order $n$ is one half of the number of super Dyck paths of order $n$. He also computed the number of humps in Motzkin paths and found a similar relation, and asked for bijective proofs. We give a bijection and prove these results. Using this bijection we also give a new proof that the number of Dyck paths of order $n$ with $k$ peaks is the Narayana number. By double counting super Schr\"{o}der paths, we also get an identity involving products of binomial coefficients.
|