全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Roman Bondage Numbers of Some Graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Roman dominating function on a graph $G=(V,E)$ is a function $f: V\to \{0,1,2\}$ satisfying the condition that every vertex $u$ with $f(u)=0$ is adjacent to at least one vertex $v$ with $f(v)=2$. The weight of a Roman dominating function is the value $f(G)=\sum_{u\in V} f(u)$. The Roman domination number of $G$ is the minimum weight of a Roman dominating function on $G$. The Roman bondage number of a nonempty graph $G$ is the minimum number of edges whose removal results in a graph with the Roman domination number larger than that of $G$. This paper determines the exact value of the Roman bondage numbers of two classes of graphs, complete $t$-partite graphs and $(n-3)$-regular graphs with order $n$ for any $n\ge 5$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133